GROWTH BLOG: AKF Partners Announces European Expansion
AKF Partners Logo Technology ConsultingScalability - We wrote the book on it ℠

Growth Blog

Scalability and Technology Consulting Advice for SaaS and Technology Companies

Splitting Applications or Services for Scale

April 3, 2017  |  Posted By: AKF

Splitting Applications or Services for Scale
Most internet enabled products start their life as a single application running on an appserver or appserver/webserver combination and potentially communicating with a database. Many if not all of the functions are likely to exist within a monolithic application code base making use of the same physical and virtual resources of the system upon which the functions operate: memory, cpu, disk, network interfaces, etc. Potentially the engineers have the forethought to make the system highly available by positioning a second application server in the mix to be used in the event that the first application server fails.

This monolithic design will likely work fine for many sites that receive low levels of traffic. However, if the product is very successful and receives wide and fast adoption user perceived response times are likely to significantly degrade to the point that the product is almost entirely unusable. At some point, the system will likely even fail under the load as the inbound request rate is significantly greater than the processing power of the system and the resulting departure rate of responses to requests.

A great engineering team will think about how to scale their platform well in advance of such a catastrophic failure. There are many ways to approach how to think about such scalability of a platform and we present several through a representation of a three dimensional cube addressing three approaches to scale that we call the AKF Scale Cube.

The AKF Scale Cube (aka Scale Cube and AKF Cube) consists of an X, Y and Z axes – each addressing a different approach to scale a service. The lowest left point of the cube (coordinates X=0, Y=0 and Z=0) represents the worst case monolithic service or product identified above: a product wherein all functions exist within a single code base on a single server making use of that server’s finite resources of memory, cpu speed, network ports, mass storage, etc.

The X Axis of the cube represents a means of spreading load across multiple instances of the same application and data set. This is the first approach most companies use to scale their services and it is effective in scaling from a request per second perspective. Oftentimes it is sufficient to handle the scale needs of a moderate sized business. The engineering cost of such an approach is low compared to many of the other options as no significant rearchitecting of the code base is required unless the engineering team needs to eliminate affinity to a specific server because the application maintains state. The approach is simple: clone the system and service and allow it to exist on N servers with each server handling 1/Nth the total requests. Ideally the method of distribution is a loadbalancer configured in a highly available manner with a passive peer that becomes active should the active peer fail as a result of hardware or software problems. We do not recommend leveraging roundrobin DNS as a method of load balancing. If the application does maintain state there are various ways of solving this including a centralized state service, redesigning for statelessness, or as a last resort using the load balancer to provide persistent connections. While the Xaxis approach is sufficient for many companies and distributes the processing of requests across several hosts it does not address other potential bottlenecks like memory constraints where memory is used to cache information or results.

The Y Axis of the cube represents a split by function, service or resource. A service might represent a set of usecases and is most often easiest to envision through thinking of it as a verb or action like “login” and a resource oriented split is easiest to envision by thinking of splits as nouns like “account information”. These splits help handle not only the split of transactions across multiple systems as did the X axis, but can also be helpful in reducing or distributing the amount of memory dedicated to any given application across several systems. A recommended approach to identify the order in which these splits should be accomplished is to determine which ones will give you the greatest “headroom” or capacity “runway” for the least amount of work. These splits often come at a higher cost to the engineering team as very often they will require that the application be split up as well. As a quick first step, a monolithic application can be placed on multiple servers and dedicate certain of those servers to specific “services” or URIs. While this approach will help spread transaction processing across multiple systems similar to our X axis implementation it may not offer the added benefit of reducing the amount of system memory required by service/pool/resource/application. Another reason to consider this type of split in very large teams is to dedicate separate engineering teams to focus on specific services or resources in order to reduce your application learning curve, increase quality, decrease time to market (smaller code bases), etc. This type of split is often referred to as
“swimlaning” an application.

The Z Axis represents ways to split transactions by performing a lookup, a modulus or other indiscriminate function (hash for instance). As with the Y axis split, this split aids not only fault isolation, but significantly reduces the amount of memory necessary
(caching, etc) for most transactions and also reduces the amount of stabile storage to which the device/service needs attach. In this case, you might try a modulus by content id (article), or listing id, or a hash from the received IP address, etc. The Z axis split is often the most costly of all splits and we only recommend it for clients that have hypergrowth or very high rates of transaction. It should only be used after a company has implemented a very granular split along the Y axis. That said, it also can offer the greatest degree of scalability as the number of “swimlanes within swimlanes” that it creates is virtually limitless. For instance, if a company implements a Z axis split as a modulus of some transaction id and the implementation is a configurable number “N”, then N can be 10, 100, 1000, etc and each order of magnitude increase in N creates nearly an order of magnitude of greater scale for the company.

AKF Applications Cube

Permalink

PDLC or SDLC

April 3, 2017  |  Posted By: AKF

As a frequent technology writer I often find myself referring to the method or process that teams use to produce software. The two terms that are usually given for this are software development life cycle (SDLC) and product development life cycle (PDLC). The question that I have is are these really interchangeable? I don’t think so and here’s why.

Wikipedia, our collective intelligence, doesn’t have an entry for PDLC, but explains that the product life cycle has to do with the life of a product in the market and involves many professional disciplines. According to this definition the stages include market introduction, growth, mature, and saturation. This really isn’t the PDLC that I’m interested in. Under new product development (NDP) we find a defintion more akin to PDLC that includes the complete process of bringing a new product to market and includes the following steps: idea generation, idea screening, concept development, business analysis, beta testing, technical implementation, commercialization, and pricing.

Under SDLC, Wikipedia doesn’t let us down and explains it as a structure imposed on the development of software products. In the article are references to multiple different models including the classic waterfall as well as agile, RAD, and Scrum and others.

In my mind the PDLC is the overarching process of product development that includes the business units. The SDLC is the specific steps within the PDLC that are completed by the technical organization (product managers included). An image on HBSC’s site that doesn’t seem to have any accompanying explanation depicts this very well graphically.

Another way to explain the way I think of them is to me all professional software projects are products but not all product development includes software development.  See the Venn diagram below. The upfront (bus analysis, competitive analysis, etc) and back end work (infrastructure, support, depreciation, etc) are part of the PDLC and are essential to get the software project created in the SDLC out the door successfully.  There are non-software related products that still require a PDLC to develop.

Do you use them interchangeably?  What do you think the differences are?

Reach out to AKF

Permalink

Definition of MVP

April 3, 2017  |  Posted By: AKF

We often use the term minimum viable product or MVP but do we all agree on what it means? In the Scrum spirt of Definition of Done, I believe the Definition of MVP is worth stating explicitly within your tech team. A quick search revealed these three similar yet different definitions:

     
  • A minimum viable product (MVP) is a development technique in which a new product or website is developed with sufficient features to satisfy early adopters. The final, complete set of features is only designed and developed after considering feedback from the product’s initial users. Source: Techopedia
  •  
  • In product development, the minimum viable product (MVP) is the product with the highest return on investment versus risk…A minimum viable product has just those core features that allow the product to be deployed, and no more. Source: Wikipedia
  •  
  • When Eric Ries used the term for the first time he described it as: A Minimum Viable Product is that version of a new product which allows a team to collect the maximum amount of validated learning about customers with the least effort.
    Source: Leanstack

I personally like a combination of these definitions. I would choose something along the lines of:

A minimum viable product (MVP) has sufficient features to solve a problem that exists for customers and provides the greatest return on investment reducing the risk of what we don’t know about our customers

Just like no two teams implement Agile the same way, we don’t all have to agree on the definition of MVP but all your team members should agree. Otherwise, what is an MVP to one person is a full featured product to another. Take a few minutes to discuss with your crossfunctional agile team and come to a decision on your Definition of MVP

Permalink

AKF Turns 10 – And It’s Still Not About the Tech

March 23, 2017  |  Posted By: AKF

The caller ID was blocked but Marty had been expecting the call.  Three “highly connected” people – donors, political advisers and “inner circle” people –  had suggested AKF could help. It was October 2013 and Healthcare.gov had launched only to crash when users tried to sign up. President Obama appointed Jeffrey Zients to mop up the post launch mess. Once the crisis was over, the Government Accountability Office (GAO) released its postmortem citing inadequate capacity planning, software coding errors, and lack of functionality as root causes. AKF’s analysis was completely different – largely because we think differently than most technologists. While our findings indicated the bottlenecks that kept the site from scaling, we also identified failures in leadership and a dysfunctional organization structure.  These latter, and more important, problems prevented the team from identifying and preventing recurring issues.

We haven’t always thought differently. Our early focus in 2007 was to help companies overcome architectural problems related to scale and availability. We’ve helped our clients solve some of the largest and challenging problems ever encountered – cyber Monday ecommerce purchasing, Christmas day gift card redemption, and April 15th tax filings. But shortly after starting our firm, we realized there was something common to our early engagements that created and sometimes turbocharged the technology failures. This realization, that people and processes – NOT TECHNOLOGY–  are the causes of most failures led us to think differently.  Too often we see technology leaders focusing too much on the technology and not enough on leading, growing, and scaling their teams.

We challenge the notion that technology leaders should be selected and promoted based on their technical acumen. We don’t accept that a technical leader should spend most of her time making the biggest technical decisions.  We believe that technical executives, to be successful, must first be a business executive with great technical and business acumen.  We teach teams how to analyze and successfully choose the appropriate architecture, organization, and processes to achieve a business outcome. Product effort is meaningless without a measurable and meaningful business outcome and we always put outcomes, not technical “religion” first.

If we can teach a team the “AKF way” the chance of project and business success increases dramatically. This may sound like marketing crap (did we mention we are also irreverent?), but our clients attest to it.  This is what Terry Chabrowe, CEO eMarketer, said about us:

AKF served as our CTO for about 8 months and helped us make huge improvements in virtually every area related to IT and engineering. Just as important, they helped us identify the people on our team who could move into leadership positions. The entire AKF team was terrific. We’d never have been able to grow our user base tenfold without them.

A recent post claimed that 93% of successful companies abandon their original strategy.  This is certainly true for AKF. Over the past 10 years we’ve massively changed our strategy of how we “help” companies. We’ve also quadrupled our team size, worked with over 350 companies, written three books, and most importantly made some great friendships. Whether you’ve read our books, engaged with our company, or connected with us on social media, thanks for an amazing 10 years. We look forward to the next 10 years, learning, teaching, and changing strategies with you.

 

Permalink

‹ First  < 12 13 14

Categories:

Most Popular: